CONSERVATION LAWS AND INVARIANTS OF DIFFERENTIAL
EQUATIONS IN SOME PROBLEMS RELATING
TO A NONHOMOGENEOUS MEDIUM

N. S. Erokhin

We examine the relationship between conservation laws and invariants of differential equa-
tions in problems dealing with the transformation of waves in a plasma and also the relation-
ship of the invariants with the stability of oscillations locked in a nonhomogeneous medium
and with the stability of oscillations of connected oscillators whose parameters vary randomly
with time.

In solving diverse problems relating to a nonhomogeneous medium in a linear setting it often becomes
necessary to study the fourth-order equation

ayV+ (o) 4w 0)y =0 {0.1)

with a small parameter a. Inthe case of a weak nonhomogeneity this equation deseribes the propagation of
two modes with wave vectors

Ky = (ua/hot -+ Vit [ 50) " = (uy ot — Y [ 5t ™ (0.2)

and in their domain of interaction u; & 0 gives the complete transition of the modes into one another {1, 2}
(i.e., a wave incident on the domain of interaction, depending on the conditions of the problem, may either be
reflected backwards or it may proceed farther as a wave with other dispersing properties). Moreover, as
was shown in [3], the complete transition is not associated with the smallness of the parameter «. What is
required is the absence in the domain of interaction of points of the cutoff k(x) =0 and of poles of u; and u,
and other singularities. It should be remarked that the result [1] is nontrivial. For example, we may write
k; in the form

k1= kl-?i-kz + kl-;;kz

Then, as already noted in [4], one might expect, with the incidence of the mode k; on the domain of
interaction, the appearance of waves with wave vectors k=—k;, k=—k,. However a calculation made for
the case of a simple zero of the function u, gives only the transition k; <~ k,.

In this connection we examine in the present paper energy relationships for the anomalous transfor-
mation of waves in a plasma. It turns out that conservation of the energy flow during the transformation
may be secured by an invariant of the corresponding differential equation. Further we examine the relation-
ship between the invariant and the stability of oscillations locked in a nonhomogeneous medium and the sta~
bility of oscillations of connected oscillators whose parameters vary randomly with time.

1. We consider the transformation of plasma and singular waves in the domain of upper hybrid reso-
nance frequencies. The ions generate a positively charged background and a weak nonhomogeneity of the
fundamental magnetic field Hy. For electronic components of the plasma we have the following equations
for the perturbations:
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From Eqgs. {1.1) we obtain the law for the conservation of energy
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For the transverse propagation of waves
H, = Hy (2} ¢, ny = n, ()
and the perturbation may be put in the form
f(x, t) = Ref(x) et
We introduce the notation
U= (0g/ 02, v=(o,/e)F E=oz/c, T, md=R<1

From Eds. (1.1) we obtain for the electric field components
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) +( —u—v)E, = utE,

As a consequence of Eq. (1.2) the system of Eqgs, (1.3) has the invariant
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In the quasiclassical approximation, deleting terms of order 5%, we obtain for a plasma wave
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From Egs. (1.5) we have for the energy flow in a plasma wave
AR
S5 = cf? ISRL
Similariy for a singular wave we have
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From Egs. (1.6) we obtain for the energy flow in the singular wave

!2

SS)=C lSIfr,

Thus in this approximation the waves propagate independently. To determine the relationship be-
tween the constants A and B it is necessary to solve Egs. (1.3) in the resonance region. Let an electro-
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magnetic wave be incident on the plasma from a vacuum. In a homogeneous magnetic field the cutoff point

v_=1-Yu is positioned nearer to the resonance point vy =1-u at the edge of the plasma, and the coefficient
of the transformation is, generally speaking, exponentially small. However, in a nonhomogeneous magnetic
field, as first pointed outin [5], these points may be interchanged. Actually, we set u and v equal to linear
functions:

u (B) = up (1 — Elpy), v (&) = v, (1 — E/pn)
U + vy =1 {01, P2 >1)

When (uy/p > (vy/py). there is no cutoff in the region between the vacuum and the resonance layer,
The factor (uv)¥? is regular in the resonance region; therefore, as is evident from Egs. (1.5), (1.6), it is
necessary to find a relationship between B and A(uyvy/2. After this, Wasow's equation [6] follows from
Egs. (1.3):
d"E\ d”E . Uuo vy
BZ"E’E?E at — 1 d? uovoE =0, a== i {1.7)
With the aid of the asymptotic formulas [6] we obtain B=—fA. From this it follows that SX@ =SX(2),

i.e., the energy flows into the plasma and singular waves are equal. It is easy to show that Eq. (1.7) [as
well as the Eqgs. (1.3)] has the invariant

dip ay . dE, , dE ) _
B (‘P d‘i "p'_g_) + QOU{) (Ey'd—gu' — Ey -—d—i—-u- = ¢onshb (1_8}
d2E,
e By
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From Eq. (L.8) it is, in fact, possible to determine | B/A|. Notonlyherebutalso in the general case
there is a correspondence of the invariant to the conservation of the flow of energy. Actually, in the absence
of dissipation the energy-conservation law must be of the form (1.2). Then in the stationary state the di-
vergence of the flow of energy is equal to zero. Consequently there exists an invariant bilinear form in the
perturbed quantities. For a two-dimensional layered nonhomogeneous medium the invariant is a component
of the flow of energy along the nonhomogeneity. Thus to obtain the correct results it is necessary that the
simplified system of equations possess an invariant in the transformation domain. Of course, the wave
field is here assumed to be regular, since even in the absence of dissipation it is possible to have finite
energy absorption in a region of a singularity of the wave field [7]. '

2. The concept of an invariant even proves to be useful in studying the spectrum of the oscillations
of a nonhomogeneous medium. As we shall show below, absence of an invariant may lead to an insta-
bility of oscillations locked in a nonhomogeneous medium. Let the oscillations be described by the equa-
tion

¥V A+ A (uy™ + uy) =0 2.1

where A% is a large real parameter. Consider the case without dissipation when w4, Uy are real functions of
the variable x and the parameter w. We find quasiclassical rules for quantizing the Eq. (2.1) assuming
that uy(x; w) vanishes af the points xj, X, and that u; > 0. We assume that the zeros of u;{x; w) and the other
possible branch points are remotely located in the complex x plane,

Since in a neighborhood of the points x;, X, the modes of Eq. (2.1) completely pass into one another,
it is then necessary to select in a region of transparency the solution as the sum of fwo waves having the
same phase-velocity direction. In this respect the given problem differs from the problem of quantizing
the fourth order equation of the theory of hydrodynamic stability, which was studied for the first time in
[8]. In accord with [9], it follows that in a neighborhood of the points x;, X, we should put uy(x) = =y (% 2) .
(x—x4,2) and uy=uy(xq,9). Thus Eq. (2.1) becomes Wasow's equation (see [6]). Using the results given’ m
[6], we write for the points xy, x,, respectively

. ] ko f—‘/?exp’{— [ oz, 21) ). {z<C21)
YE = ® @, o) — a7 Vi e ¥P (5, ) (o> a) 2.2
(x) =~ [ Clc;/“?f—) (=, x2) — C/qﬁ/’% Vi (w2} ¥_ (2, 28) (o < 29) . (2.2)
Y -~ i C§ ks ]—‘[3 exp {(— )Jz (2, w2} [} . (2> )
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Jo@@, 8 =k ©d, ¥ = exp[+Yuin + J, (2, @)l € = const (v=1,2)
|3

In Eqgs. (2.2) the integrals J; (X, X)) are taken in the sense

x

X
§ bitkeg, i—giﬁv}&dx

2

and similarly for the point %, (a, b are branch points).

Upon carrying out the joining operation in formulas (2.2), we obtain the quantification rule

— [MT" == exp (- 2{6} (5 o %@f—iz;}i%—du’&‘) (2.3)

uz (w2 @)

For a "symmetric® potential u; (X; w) =y, (%); w), it follows from Eq. (2.3) that

d}-’f—‘;z——k-“—da:=2ﬂ <n+~}) (2.4)

As is evident from Eq. (2.3), for a "nonsymmetric" potential u;there is always an instability, i.e., k, ,
necessarily has an imaginary part. An analogous phenomenon was observed in [10] with quantizing of thé
equation

¥V o+ 2p @yt + 2e (0t + g (@)y =0
where two branch points are involved.

We remark that in contrast to an equation of the second order [11}], Eq. (2.1) here is not necessarily
quantized on the real phase curve [ Vg(krkz)dx. As is evident from Eq. (2.3), this is of necessity satis-
fied for the nonsymmetric potential u;. Moreover the wave vectors ky, k, here may have large imaginary
parts. For the case where u, is symmetric,the imaginary parts k,, k, are equal (af least for large n in
formula (2.4)). '

It is obvious that Eq. (2.1) does not always have a conservation law, this being so only under certain
restrictions on its coefficients (for example, when uy, u, are real and uy =const). One might expect that the
instabilities found in [10] and in this paper are associated with the lack of an invariant for the initial dif-
ferential equations.

In the case considered here the instability develops in the following way. Let the mode k, extend
from the point x; to the point X,. In a neighborhood of x, it passes over into the mode k; and returns to
%. It is readily seen from Eqgs. (2.2) that after one cycle of the modal amplitude there appears the factor
[u,(,) /uy(x)]Y2. If the sign of the phase velocity changes, we obtain the factor [u(x;) Juy(z)1Y2,

Thus the modal amplitudes will either grow or diminish depending on the sign of the phase velocity.
The energy of the perturbations increases at the expense of the nonhomogeneity on account of the lack of a
conservation law. It is clear, however, that lack of a conservation law still does not mean oscillational
instability. For example, we may have the case in which the variation in the flow of energy in the wave
between the transformation points x;, X, is equal to zero. The quantization rule found above was an approxi-
mate one. In this connection it is of some interest to find exact finite solutions of the fourth-order equation.

We introduce an exact quantification rule for the equation
gV 4+ R (1 — 2 g+ Byl = 0 {2.5)
Solving by Laplace's method, we obtain for y(x)
2
y () = const S 2@ (a, 7T; %) exp (‘ins — ﬁz‘) ds

. cw) i
T]:-“CI)V?\., 2V='1+V1+4B7 T=V+1/2& d'=1/4(27—}")

(2.6)

Here & (@, v ; s%) is the degenerate hypergeometric function [12], and the contour C(y) contains a cut
in the sector largs| < 1/4 7. Provided that « =—n, it follows from the asymptotic expansion formulas
of the parabolic cylinder functions [13] that in the sector
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~ Ofam < arg (zA) <Yym
the solution y(x) behaves as x!™% as |x| — «. Heren=0, 1, 2,.... Consequently, y(x) is finite on the real
x axisif Re v > 1 and | arg A| < 1/2 7.
The quantification rule has the form

A= VI F+4B+22n+1) (2.7)
If we introduce

ha=YAVIFaAi—22 YT —hi—2%) (G=VB-1

then formula (2.7) follows from formula (2.4). Thus the exact and quasiclassical quantification rules
coincide.

3. We consider now how the invariant is related to the stability of oscillations of connected oscillators.
Suppose that we have a system of linear connected oscillators whose parameters vary slowly with time. In
such a system, with a passage through the resonances & = Q& a transformation of the normal oscillations
Qu (), Qr (f) takes place. In the sequel we shall call a passage through the resonances analogous to that in
[14] a collision.

If the collisions occur randomly, it is natural to ask how the normal oscillations evolve after a large
number of collisions. From the formal point of view this question is analogous to the motion of charged
particles in a random exterior field or to the transformation of waves in a medium with random nonhomo-
geneities. The direction of the evolution (stability, instability) depends on the form of the invariant of the
differential equation describing the system of oscillators. Actually, between collisions the solution for the
normal oscillations has the form

t

Zg—% exp [LS Q, (%) dt}

where the constants Ap vary jumpwise as the result of a collision. In such a case the invariant is a quadrat-
ic form in the constants Ay:

Disn| An|? = invar (s,=+1) 3.1)

If the signature of the quadratic form (3.1) is equal to its rank, | Ay | is bounded from above, i.e.,
the motion of the oscillators is finite in phase space. Inthe contrary case the system may be unstable,and
the second moments of the kinetic equation for the coordinates and impulses of the oscillators may grow
exponentially with time. A strict proof of this assertion in the general case is difficult; however it is verifi-
able in the particular cases introduced below.

For an oscillator in a random external field the points of Q) =0 are resonances. The invariant has
the form

| Ay 2 — |[A_|* = invar
One may thus expect the motion to be unstable. The solution in [14] verifies this result. In [15] con-
sideration was given to the transformation of waves in a medium with random nonhomogeneities. Formally

the situation is equivalent to a system of two connected oscillators with the resonances 2, =Q,. The form of
the invariant was

|A;|2 + [A2]? = invar

It was found that independently of the initial conditions the system approaches equilibrium in which
|A;] =| A,| (in accord with what was said above).

Here we consider the simultaneous passage of two connected oscillators through the resonances Q@ =
Q,, £;=—Q, at random instants of time.

Let X ;, Y, be normal oscillations with the frequencies €4, 2,. We introduce a column vector Z
with the components z; , =X, z43=Y,, and similarly [14, 15] we consider the auxiliary system of equations
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22 \KZ+ 2@@6 ¢ —tn) (3.2)

where K is a diagonal matrix with Ky; ==Ky = @4, Ky =—K33=Q,, and Q, are matricesof order four.
The solution (3.2) undergoes jumps at the time instants ty, wherein

Z (tn + O) = eXp (Qn) 4 (tn —0)

Thus if the matrix exp (Qy) coincides with a matrix of transition between normal oscillations at colli-
sion, we may consider the equivalent problem of averaging the solutions of the system (3.2). In addition,
the tn will be distributed randomly. Similar to what was done in [15] we select the real solution z, =7,
zy =%, and pass to the real variables §; , =Re Zy4> M2 =Im 7y 4. As usual (see [16]), we obtain a kinetic
equation for the distribution function f t; &y, ’71: g, 52)

St eufadl —mgh) ot - ) =50)

(3.3)
S =—vi+v§w@ N rdedh, =155 0k 0k )

Here v is the collision frequency with an assumed Poissonian distribution; o, A are collision param-
eters having the random distribution w(o, A); a point (§,*, ny* , 1, ¥, £5%) of the phase space passes as
the result of a collision into the point (£, 1y, 7, &9).

The matrix of transition from (§, ny, 1y, &) into (§;*, n* , ny*, £,*) is given in the Appendix as for-
mula (A.6). From Egs. (3.3) it is easy to obtain equations for ten of the second moments of the distribution
function. To simplify the calculations we consider the case g—~« and also w(g) =5 (€,—2¢y) (seethe
Appendix). Moreover the oscillators pass only through the resonances Q4 =Q,, and the invariant, in contrast
to that in [15], has the form

glz 4 7]12 — 1’]22 —_ Ezz = ¢onst (3.4)

From Eq. (8.4), in accord with what was said above, instabilities in the motion of the oscillators
should be expected. To find the increment of instability we introduce the notation

=82+ +n+ 8% I =58+ nmy L= &ma— &y
Then from Eqgs. (3.3) we obtain
21> = 2up2 (D> + dvpy Ly — dvpr <l
LAy = —wr D — 23D v 2l (1= (3.5)
F Ay = —vpr (D> — v (g -+ 210) I + 2v (7 — 1) (I

where p, ¥, X are given in the Appendix, We remark that the transition matrix found in the Appendix has
a meaning if the collisions are less frequent than [q| >» 1. We seek a solution of Egs. (3.5) in the form

exp [v §m (T) dr]

For w we obtain from Eqgs. (3.5)
o +4( — o+l +4gvr +4 (% — ) 0 — 2% =0 {3.8)

Equation (3.6) always has a positive root, which we denote by w;. For weak collisions, 2¢,>» 1, and
from Eq. (3.6) we have w{™ 2 exp (—2¢&,). Thus the time 1/ exp (2¢) for the instability to develop is
large compared to the times between collisions.

In conclusion we remark that although in [14] and in the present paper identical resonances {1 =8,
were studied for £, , the results are directly opposite. In the case treated here the instability, of in-
variant type and hence different from that in [14], was obtained as the result of having different signs on
the oscillator masses. Actually, we take the following system of oscillators:

—»—~(t2+?»)v—*y, y == (A B>0)
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It follows from this that for the oscillator y we have the Eq. {A.1), which gives the matrix of transi-
tion between normal oscillations. Thus the given instability refers to a class of instabilities of negative
mass.

Appendix, As matrix of {ransition between normal ogcillations with the resonances Q,=8Q,, ;=—0,
we take the matrix of transition for the solutions of the differential equation

d d*
NG =0 (A1)

where A, > 0. We give the final result. The frequencies of the normal oscillations are
QW ="[E+r+)E L@ +r—0)"] (o= VB-1)

When A >0 > 0, on the real t axis we will have 91,2 > 0. We find the normal oscillations to be

X, =0 exp <ﬂ: clS o) dt), = exp (ifi gm)
The general solution for t - + «» may be written in the form F 4+ 2 where F is a row vector consisting
of arbitrary constants. Then F,=F._ M. The transition matrix M has the representation
M = {VHVe ™ {A.2)
Here V is a diagonal matrix with the slements
Vit = Vog = &1, Vs == Vg == 0%

For the elements of the matrix H we have

Hy = — Hyy = (1 4 e (1 + e)'h oth¥y no

Hyp == — Hyy =1, Hgg = — Hyg== (1 4 ) (1 4 o)

Hy == — Hy, = ¢hY/, mo + e™ cseh Yoo

Hy = Hy = (1 + e*)eht Y, o) (A.3)

Hm = H31 = Hdz
Hy = Hy = (1 + e (cth 1/, no). '
H41 === st = - HM" £1,2 = l/zﬁ(k :}: 0')

The phases a4, o, are given by

L e/ _ 4
t {F(‘/zﬂr—m/‘)ﬂ)f‘(‘fz fse/zm} b ln;“f?-—z-‘[i 1o V’Tu’?@}'

=g A TR i 09) T (G5 — 1)
| T (2 +181/2) ks AT 4 (B4
n 1 (M2 4 v&1/2n G 3, A .
dp=— g parg { I‘(llz——fsz/Zu)} —E sttt V;[z_’_c‘z}
We note that
t1a =§%_1§_93d.:
Using Eqgs. (A.2), (A.3), and (A.4},we can show that
det M = 1, A= M*AM {A.5)

where the plus sign denotes the operation of taking the transpose and the complex conjugate; A is a diagonal
matrixs Ay =7y =1, Ay =Ags=—1. From Ed. (A.5) we obtain the invariant

[Fi| 2+ | Fol ® — | Fol 2 — | Fyl * = invar

We let gy—~. Then for columnvectorR: Ry =£;, Ry =1y, Ry =1,, R, =&,, we obtain

R“Ei?! A (A.6)
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10.

11.
12.
13.
14
15.

16.

900

For the matrices S and D we have

Spp = S =y = (1 + )" cogp, Sy = — Sp =y = {1+ ) gin p
Dyy=—Dypy=p=¢% Dy =Dy= 0
[ = (8g/r) — (go/m) In (go/nt) — T (Yo — (e, / m)
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