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DIF FERENTIAL 

We examine the relationship between conservat ion laws and invariants  of differential equa- 
t ions in problems dealing with the t ransformat ion  of waves in a p lasma and also the relat ion-  
ship of the invariants with the stabili ty of oscil lat ions locked in a nonhomogeneous medium 
and with the stability of oscil lat ions of connected osci l la tors  whose p a r a m e t e r s  v a r y  randomly 
with t ime.  

In solving diverse  problems relat ing to a nonhomogeneous medium in a l inear  setting it often becomes 
n e c e s s a r y  to study the four th -o rde r  equation 

~yiv + u2 (x; e )  yii § u~ (x; ~)  g = 0 (0.1) 

with a small  pa rame te r  a .  In the case of a weak nonhomogeneity this equation descr ibes  the propagation of 
two modes with wave vec to rs  

and in their domain of interaction u 2 ~ 0 gives the complete transition of the modes into one another [I, 2] 
(i.e., a wave incident on the domain of interaction, depending on the conditions of the problem, may either be 

reflected backwards or it may proceed farther as a wave with other dispersing properties). Moreover, as 
was shown in [3], the complete transition is not associated with the smallness of the parameter a. What is 
required is the absence in the domain of interaction of points of the cutoff k(x) =0 and of poles of u I and u 2 
and other singularities. It should be remarked that the result [I] is nontrivial. For example, we may write 
k i in the form 

2 2 

Then, as a l ready noted in [4], one might expect, with the incidence of the mode k 1 on the domain of 
interaction,  the appearance of waves with wave vec tors  k = - k l ,  k = - k  2. However a calculation made for 
the case  of a simple ze ro  of the function u 2 gives only the t ransi t ion k 1 --* 1~. 

In this connection we examine in the present  paper  energy relat ionships for the anomalous t r a n s f o r -  
mation of waves in a plasma.  It turns  out that conservat ion of the energy flow during the t ransformat ion  
may be secured by an invariant of the corresponding differential equation. Fur the r  we examine the re la t ion-  
ship between the invariant  and the stability of oscil lat ions locked in a nonhomogeneous medium and the s t a -  
bili ty of oscil lat ions of connected osci l la tors  whose p a r a m e t e r s  va ry  randomly with t ime. 

1. We consider  the t ransformat ion  of p lasma  and singular waves in the domain of upper hybrid r e s o -  
nance frequencies.  The ions generate a posit ively charged background and a weak nonhomogeneity of the 
fundamental magnetic field It 0. For  e lectronic  components of the p lasma we have the following equations 
for  the per turbat ions :  
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OV V 
m n o  ~ = - -  e n E o  - -  e n o E  - -  T ~ V n  - -  eno ( c  x14@ 

0E 0II - -  c rot E 0--7" = c ro~ H + 4~enov, 0-7- = 

0 n + d i v n o v = 0 ,  d i v E = - - 4 r ~ e n ,  e E o + T ~ V l n n o = 0  
Ot 

(1.1) 

F r o m  Eqs .  (1.1) we obta in  the law for  the c o n s e r v a t i o n  of ene rgy  

O W + div S ----- 0 
O r .  

rnnov ~ E ~ -]- I t  ~ Tens c x I'l) 
W = - - - i f - - §  8~ +-T~-o  ' S = T ~ n v + T h - ( E  

(1.2) 

F o r  the  t r a n s v e r s e  p ropaga t ion  of wave s  

14o = I I o  ( z )  e~, no = no (x) 

and the p e r t u r b a t i o n  may  be put in  the f o r m  

/ (x, t) = Ro / (x) e~  

We i n t r o d u c e  the no ta t ion  

u = (~a , / (~P,  v ~ (%~ / o))~, ~ = o)x / c, r , ]  rac ~ = ~ ~ t 

F r o m  Eqs .  (1.1) we obta in  for  the  e l e c t r i c  f ie ld  c o m p o n e n t s  

dSE u 
d~ 2 + (1 -- v) Eu = -- ~u';~Ex 

d~ de d~ - /  + (i -- u -- v) Ex = i v u ' / ' E  u \ 
(1.3) 

As  a consequence  of Eq. (1.2) the  s y s t e m  of Eqs,  (1.3) has  the  i n v a r i a n t  

E~-Z~--- E ~ - + S -  \ ~ ~ E~-ZU)=e~ (1.4) 

In the q u a s i e l a s s i e a l  app rox ima t ion ,  de l e t ing  t e r m s  of o r d e r  f12, we obta in  for  a p l a s m a  wave 

kl ~ = ~s , E~ = A -'. ~ t By = E~ 

H~---- - -  E x  k ~  ' v x =  m o)----~' Vu = m(ov 

r176 x I n =  4atee ' 0~(~)= kx(;)d;, A = c o n s t  

(1.5) 

F r o m  Eqs .  (1.5) we have fo r  the  e n e r g y  flow in  a p l a s m a  wave  

S~ ~) = ct3~ I A t s. 
8z 

S i m i l a r l y  for  a s i n g u l a r  wave  we have 

( t - - v )  s - u  __ B ~ "0 

} I z =  --k2Ev, Vx - -  mo) ( t  __ u __ v) ' 

O) vk~uV~Ey  , 

n = 4 n e e ( l - - u - - v ) ,  02(~) = i k ~ ( ~ )  d~' 

Cvu'h E ~l 

E x  - - ' t - - u - - v  

CeE~, (i -- v) 
vv  = mo~ (i -- u -- v) 

B ~ corlst~ 

( 1 . 6 )  

F r o m  Eqs.  (1.6) we obtain for  the  ene rgy  flow in  the  s i n g u l a r  wave 

S (2) -- c I B t ~ 

T h u s  in  t h i s  a p p r o x i m a t i o n  the  waves  p ropaga t e  independen t ly .  To  d e t e r m i n e  the  r e l a t i o n s h i p  b e -  
tween  the  c o n s t a n t s  A and B i t  i s  n e c e s s a r y  to so lve  Eqs.  (1.3) in  the  r e s o n a n c e  reg ion .  Let  an e l e c t r o -  
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magnet ic  wave be incident on the p l a s m a  f rom a vacuum. In a homogeneous magnet ic  field the cutoff point 
v_ = 1 - ~ f u  is  posi t ioned n e a r e r  to the resonance  point v0 = 1-u at the edge of the p la sma ,  and the coefficient  
of  the t r a n s f o r m a t i o n  is ,  genera l ly  speaking, exponential ly smal l .  However ,  in a nonhomogeneous magnet ic  
field, as  f i r s t  pointed out in [5], t hese  points  may be  interchanged.  Actually,  we set  u and v equal to l inear  
functions: 

( ~ )  = Uo (i - U p s ) ,  

Uo + Vo = t 
v (B) = ~o (1 - Uo=) 

(p,  p~>~l) 

When (u0/p, l) > (v0/P2) , t he re  is  no cutoff in the region between the vacuum and the resonance  layer .  
The  fac to r  (uv)i/2 i s  r egu la r  in the resonance  region; t he re fo re ,  as is  evident f r o m  Eqs.  (1.5), (1.6), it i s  
n e c e s s a r y  to  find a re la t ionship  between B and A(tt0v0//2 . Af te r  this ,  Wasow ' s  equation [6] follows f r o m  
Eqs. {1.3): 

~ d4Eu d2E~, 
+ a~ - - ~  -- uovoE , = O, U0 7)0 a = (1.7) 

With the aid of  the asympto t i c  f o rm u l a s  [6] we obtain B = - f lA .  F r o m  th is  it follows that  Sx (i) =Sx (2), 
i .e . ,  the ene rgy  flows into the p l a s m a  and s ingular  waves  a re  equal. It is  easy  to show that  Eq. (13) [as 
well  as the Eqs. (1.3)] has the invar ian t  

- -  dr \(Ev d E .  dE. 
~ ( , - ~  -- , dd--~ ) + uov o -- E~ = consL 

--d~-; (1.8) 
d% 

F r o m  Eq. (1,8) it is ,  in fact ,  poss ib le  to de te rmine  I B /A[ .  Not only he re  but also in the genera l  case  
the re  is a co r respondence  of the invar iant  to the conserva t ion  of the flow of energy.  Actually, in the absence 
of diss ipat ion the energy-conserva t ion  law must  be of the  fo rm (1.2). Then in the s ta t ionary  s ta te  the d i -  
ve rgence  of the flow of energy  is  equal to zero.  Consequently t he r e  ex i s t s  an invar iant  b i l inear  f o r m  in the 
p e r t u r b e d  quanti t ies.  F o r  a two-d imens iona l  l ayered  nonhomogeneous medium the invar iant  i s  a component 
of the flow of energy  along the  nonhomogeneity.  Thus to obtain the c o r r e c t  r e su l t s  it is n e c e s s a r y  that  the 
s impl i f ied s y s t e m  of equations p o s s e s s  an invar iant  in the t r a n s f o r m a t i o n  domain. Of course ,  the wave 
field is  he re  a s sumed  to be regu la r ,  since even in the absence  of d iss ipat ion it is  poss ib le  to have finite 
ene rgy  absorpt ion in a region of a s ingular i ty  of the wave field [7]. 

2. The  concept  of an invar iant  even p r o v e s  to be useful  in studying the spec t rum of the  osci l la t ions  
of a nonhomogeneous medium.  As we shall  show below, absence  of an invar iant  may lead to an ins ta-  
bi l i ty  of osc i l la t ions  locked in a nonhomogeneous medium. Let  the osci l la t ions  be descr ibed  by the equa-  
t i on 

yIv _{_ ~ (u2yII + uly ) = 0 (2.1) 

where  ~2 i s  a l a rge  r e a l  p a r a m e t e r .  Consider  the case  without diss ipat ion when Ul, u2 a r e  r e a l  functions of 
the v a r i a b l e  x and the p a r a m e t e r  w. We find quasic lass ica~ ru les  for  quantizing the Eq. (2.1) assuming  
that  u2(x; w) van i shes  at the points  xl, x 2 and that  u 1 > 0. We a s s u m e  that the z e r o s  of ul(x; w) and the other  
poss ib le  b ranch  points  a re  r em o t e l y  located in the complex  x plane. 

Since in a neighborhood of the points  xl, x 2 the modes of Eq. (2.1) comple te ly  p a s s  into one another,  
it i s  then n e c e s s a r y  to se lec t  in a region of t r a n s p a r e n c y  the solution as  the sum of t~vo waves  having the 
s a m e  phase -ve lo c i t y  direct ion.  In th is  r e s pec t  the given p r o b l e m  di f fers  f rom the p rob lem of quantizing 
the fourth o rde r  equation of the theo ry  of hydrodynamic  stabil i ty,  which was studied for  the f i r s t  t ime  in 
[8]. In accord  with [9], it follows that in a neighborhood of the points  x 1, x 2 we should put u2(x) =u 2' (xi,2). 
( x -x I , 2 )  and ul=ul(xi,2).  Thus Eq. (2.1) becomes  Wasow ' s  equation (see [6]). Using the resu l t s  given in 
[6], we wri te  fo r  the points xl, x2, r e spec t ive ly  

I k~//' exp (-- 1:2 (~, ~i) I) (x < xl ) 
Y (~:) ~ [ k['/~(f ) (=, =~) - k~':~ V ~ )  (~, xl) (~ > ~1) 

y (x) ~ C t ku l -'/~' exp (-- I :~ (=, =') I) (= > =~) 

(2.2) 
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Jr 

J , (x ,  ~) = lk,(r ~'~) = exp [-Fz/,i~ 4-J , (x ,  xz)], C = const (v = t~ 2) 

In Eqs. (2.2) the in tegra l s  Ji,z(X, xl) a r e  taken  in the s e n s e  

X 

ki-l-k2 dx ~ kl--k~ dx 
j - - V -  -4-~ 2 
a b 

and s i m i l a r l y  for  the  point x 2 (a, b a r e  b ranch  points).  

Upon ca r ry ing  out the joining opera t ion in fo rmu la s  (2.2), we obtain the quantification rule  

_ [,,, ?,,! Iv, = e,:p ( +  z 8) (8 k, 
LUz (x~; co) ] .  - -  , 

F o r  a " s y m m e t r i c ' ,  potent ial  u I (xl; w) =u 1 (x2; w), it follows f rom Eq. (2.3) that  

(2.3) 

As is  evident f r o m  Eq. (2.3), for  a " n o n s y m m e t r i c  ~ potent ial  u t there  is~always an instabil i ty,  i .e. ,  ki, 2 
n e c e s s a r i l y  has an i m a g i n a r y  pa r t .  An analogous phenomenon was  obse rved  in [10] with quantizing of the 
equation 

ySV 4- 2p (x)y Iz 4- 2s (x)y I 4- q (x)y = 0 

where  two b ranch  points  a r e  involved. 

We r e m a r k  that  in con t ras t  to an equation of the second o rde r  [11], Eq. (2.1) he re  is  not n e c e s s a r i l y  
quantized on the r ea l  phase  curve  f i /2(ki-kz)dx.  As is evident f rom Eq. (2.3), th is  is  of neces s i ty  s a t i s -  
fied for  the n o n s y m m e t r i c  potent ial  u 1. Moreove r  the wave vec to r s  k l, k 2 he re  may have la rge  imag ina ry  
pa r t s .  F o r  the case  where  u 1 is  s y m m e t r i c , t h e  imag ina ry  p a r t s  kl, k 2 a r e  equal (at leas t  for  l a rge  n in 
fo rmula  (2.4)). 

It i s  obvious that  Eq. (2.1) does not a lways have a conservat ion  law, th is  being so only under  ce r ta in  
r e s t r i c t i ons  on i ts  coeff icients  (for example ,  when u l, u 2 a r e  r ea l  and u 1 =const) .  One might expect  that  the 
ins tabi l i t ies  found in [10] and in th is  pape r  a r e  assoc ia ted  with the lack  of an invar iant  for  the init ial  d i f -  
f e ren t i a l  equations.  

In the case  cons idered  he re  the  ins tabi l i ty  develops  in the following way. Let  the  mode k 2 extend 
f r o m  the point x i to the point ~ .  In a neighborhood of x 2 it p a s s e s  over  into the  mode k 1 and re tu rns  to 
x 1. It i s  read i ly  seen f r o m  Eqs.  (2.2) that a f t e r  one cycle  of the modal  ampli tude t he r e  appea r s  the fac tor  
[ul(x~)/ul(xl)]l/2. If the  sign of the phase  ve loc i ty  changes,  we obtain the fac tor  [ul(xl)/Ul(~Z)]l/z. 

Thus  the modal  ampli tudes  will  e i ther  grow or diminish depending on the sign of the phase  velocity.  
The ene rgy  of the pe r tu rba t ions  i n c r e a s e s  at the expense  of the nonhomogeneity on account of the lack of a 
conserva t ion  law. It i s  c lear ,  however ,  that  lack  of a conserva t ion  law still  does not mean osci l lat ional  
instabil i ty.  Fo r  example ,  we may have the case  in which the var ia t ion  in the flow of energy  in the wave 
between the t r a n s f o r m a t i o n  points x t, ~ is  equal to zero .  The quantization rule  found above was  an approxi -  
mate  one. In th is  connection it is of some  in te res t  to find exact  finite solutions of the four th-order  equation. 

We int roduce an exact  quarttification rule  fo r  the equation 

y ~ V + ~ [ ( t _ 2 )  y H 4 - ~ y l = 0  

Solving by L a p l a c e ' s  method, we obtain for  y(x) 

ccu) 

n = x ~ i ,  2 v = t + g t + 4 ~ ,  ~ ' = v 4 - ' / , ,  a=z /&(2T- -k )  

(2.5) 

He re  
in the s ec to r  [ a r g  s [ < 1/4 v .  P rov ided  that  a = - n ,  it follows 
of the pa rabo l i c  cy l inder  functions [13] that  in the sec to r  

(2.6) 

@ (a ,  T ; s2) is  the degenera te  hype rgeome t r i c  function [12], and the contour C(y) contains a cut 
f r o m  the asympto t i c  expansion fo rmulas  

896 



the  solut ion Y(Y0 behaves  as  x 1-v as  ] x[ -* oo. H e r e  n = 0 ,  1, 2 . . . . .  Consequent ly ,  y(x) i s  f inite on the  r e a l  
x axis  i f  Re v > 1 a n d [  a r g  k[ < 1/2 r .  

The  quant i f ica t ion ru le  has  the  f o r m  

L =  ]/~i + @ +  2 ( 2 n + 1 )  

If we in t roduce  

(2.7) 

then f o r m u l a  (2.7) fol lows f r o m  f o r m u l a  (2.4). Thus  the exac t  and q u a s i c l a s s i c a l  quant i f icat ion ruTLes 
coincide .  

3. We c o n s i d e r  now how the invar ian t  is r e l a t ed  to  the s tabi l i ty  of  osc i l l a t ions  of  connec ted  osc i l l a to r s .  
Suppose tha t  we have a s y s t e m  of l i nea r  connec ted  o s c i l l a t o r s  whose  p a r a m e t e r s  v a r y  s lowly with t ime.  In 
such  a s y s t e m ,  with a p a s s a g e  t h rough  the  r e s o n a n c e s  ~2t ~k a t r a n s f o r m a t i o n  of  the  n o r m a l  osc i l l a t ions  
~t (t), ~2k (t) t akes  p lace .  In the sequel  we shal l  cal l  a p a s s a g e  th rough  the  r e s o n a n c e s  analogous  to  tha t  in 
[14] a col l is ion.  

If  the  co l l i s i ons  o c c u r  r andomly ,  it is  na tu ra l  to ask how the  n o r m a l  osc i l l a t ions  evolve a f t e r  a l a rge  
n u m b e r  of co l l i s ions .  F r o m  the f o r m a l  point  of  v iew th i s  ques t ion  is analogous  to  the  mot ion  of cha rge d  
p a r t i c l e s  in a r a n d o m  e x t e r i o r  field o r  to  the  t r a n s f o r m a t i o n  of waves  in a med ium with r a n d o m  n o n h o m o -  
genei t ies .  The  d i r ec t i on  of the  evolut ion (s tabi l i ty ,  instabi l i ty)  depends  on the f o r m  of  the  invar ian t  of the 
d i f fe ren t ia l  equat ion d e s c r i b i n g  the  s y s t e m  of o sc i l l a t o r s .  Actual ly ,  be tween  co l l i s ions  the solut ion for  the 
n o r m a l  osc i l l a t ions  has  the f o r m  

t An dT;l 

w h e r e  the  cons tan t s  An v a r y  jumpwise  as  the r e su l t  of a col l is ion.  
ic f o r m  in the cons tan t s  An: 

In such a ca se  the  invar ian t  is  a quadra t -  

~ s~ l A~ l  ~ = invar (s = •  (3.1) 
n 

If  the  s igna tu re  of the  quadra t i c  f o r m  (3.1) is  equal to  i t s  rank,  ] A n I is bounded f r o m  above, i .e . ,  
the  mot ion  of  the o s c i l l a t o r s  is  finite in phase  space ,  tn the c o n t r a r y  c a s e  the  s y s t e m  may  be unstable,  and 
the  second  m o m e n t s  of  the  kinet ic  equat ion for  the coo rd ina t e s  and i m p u l s e s  of  the  o s c i l l a t o r s  may  grow 
exponent ia l ly  with t ime .  A s t r i c t  p r o o f  of th i s  a s s e r t i o n  in the  gene ra l  case  is difficult;  howeve r  it is  v e r i f i -  
able in the  p a r t i c u l a r  c a s e s  in t roduced  below. 

F o r  an o s c i l l a t o r  in a r a n d o m  ex te rna l  f ield the  poin ts  of  i2(t) =0 a r e  r e s o n a n c e s .  The  invar ian t  has  
the  f o r m  

I A +  ]3 _ IA - i~ = invar 

One may  thus  expect  the  motion to be unstable .  The solut ion in [14] v e r i f i e s  th is  resu l t .  In [15] con-  
s ide ra t ion  was  given to  the  t r a n s f o r m a t i o n  of  waves  in a med ium with r a n d o m  nonhomogene i t i es .  F o r m a l l y  
the s i tua t ion is equivalent  to  a s y s t e m  of  two connec ted  o s c i l l a t o r s  with the r e s o n a n c e s  ~2 i =ft 2. The  f o r m  of 
the  inva r i an t  was  

]All ~ + IAzl 2 = invar 

It was  found tha t  independent ly  of  the ini t ia l  condi t ions  the s y s t e m  a p p r o a c h e s  equ i l ib r ium in which 
I All = I A21 (in a c c o r d  with what  was  said above). 

H e r e  we c o n s i d e r  the  s imul t aneous  p a s s a g e  of  two connected  o s c i l l a t o r s  th rough  the r e s o n a n c e s  f~l = 
f~z, ftl =-f~2 at r a n d o m  ins tan ts  of  t ime .  

Let  X ~, Y•  be n o r m a l  osc i l l a t ions  with the f r equenc i e s  ~21, ~22. We in t roduce  a co lumn v e c t o r  Z 
with the  componen ts  zl,  z =X•  z4, 3 =Y•  and s i m i l a r l y  [14, 15] we  c o n s i d e r  the aux i l i a ry  s y s t e m  of equat ions  
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dZd__.S ---- tKZ 4:- ~ Q~Z8 (t -- t~) (3.2) 

where  K is  a diagonal ma t r ix  with Kli =-K22 = ~i ,  K44 =-K~3 =~2, and Qn a re  m a t r i c e s o f  o rde r  four. 

The  solution (3.2) undergoes  jumps at the t ime  instants  tn, where in  

z (t,~ + o) = exp  (Q,,) 7, (t,~ - o) 

Thus if the m a t r i x  exp (Qn) coincides with a ma t r ix  of t rans i t ion  between normal  osci l la t ions at col l i -  
sion, we may consider  the equivalent p rob l em of averaging  the solutions of the sy s t em (3.2). In addition, 
the tn will  be d is t r ibuted  randomly.  S imi la r  to  what was  done in [15] we se lec t  the r ea l  solution z~ =Zl, 
z 3 =E4 and p a s s  to the r ea l  v a r i a b l e s  ~t,~ =Re zl,  ~, ~1,~ =Im zt,t .  As usual (see [16]), we obtain a kinetic 
equation fo r  the dis t r ibut ion function f ( t ;  ~ ,  ~t, V2, ~) :  

of o! o f  (~s al at -- ~ ~:":(:()+ ~ ' ~ -~7 )  = S ( O  

sq) = - ~t+~ I~(~, z)/*g=g~, l*-](t; :,*, n,*, he, ~,*I 
(3 .a )  

H e r e  v is the coll ision f requency with an a s sumed  Poissonian  distr ibution;  a ,  )~ a r e  coll ision p a r a m -  
e t e r s  having the r andom dis t r ibut ion w(cr, k); a point (~1", WI*, U2*, ~ * ) o f  the phase  space p a s s e s  as 
the resu l t  of a col l is ion into the point (~1, W1, U2, ~2)" 

The ma t r i x  of t r ans i t ion  f rom (~1, U1, W2, ~2) into (~1", ~1", ~2", ~2' ) i s  given in the  Appendix as f o r -  
mula  (A.6). F r o m  Eqs.  (3.3) it is  easy  to obtain equations for  ten of the  second moments  of the dis t r ibut ion 
function. To  s impl i fy  the calcula t ions  we cons ider  the case  e l ~  ~o and a lso  wife) = 5 { e 2 - 2 e  0) (see the 
Appendix). Moreove r  the osc i l l a to r s  p a s s  only through the r e sonances  121 =~22, and the invariant ,  in cont ras t  
to that  in [15], has  the f o r m  

~i ~ + ~h ~ - -  ~l~ - -  ~2 ____ const (3.4) 

F r o m  Eq. (3.4), in accord  with what was  said above, ins tabi l i t ies  in the motion of the osc i l l a to r s  
should be expected. To find the inc remen t  of  instabi l i ty  we introduce the notation 

I = ~i 2 + ~ h  ~-{-~h 2 +  ~ ,  I i =  ~i~-1-~h~h, I~ : ~i~h-- ~ i  

Then f rom Eqs. (3.3) we obtain 

d ( I }  = 2~p s <I} + 4vpX (I~} -- 4vpT (I~} 

d 
(I~} : -- ~9~ (I} -- 2v~ ~ (I~} § v (q + 27~) (I~} (~ = ~ )  (3.5) 

(Is> = -- v97 (I} -- v (q + 2Tg) <I~} + 2v (T~ -- i) (I~> 

where  p, 7, )C a re  given in the  Appendix. We r e m a r k  that  the t rans i t ion  ma t r i x  found in the Appendix has 
a meaning i f  the col l is ions a r e  l e s s  frequent  than I q I >> 1. We seek  a solution of Eqs. (3.5) in the f o r m  

t 

O 

F o r  w we obtain f r o m  Eqs.  (3.5) 

co ~ - k 4 ( i - 7  s ) ~ + [ q ~ + 4 q ~ x + 4  (u s - p 2 ) ]  o)--2pSq ~---0  (3.6) 

Equation (3.6) a lways has a pos i t ive  root ,  which we denote by co 1. F o r  weak col l is ions,  2e  0 >> 1, and 
f r o m  Eq. (3.6) we have w i ~- 2 exp ( - 2 e 0 ) .  Thus the t i m e  1/~ exp (2e0) for  the instabi l i ty  to develop is  
l a rge  c o m p a r e d  to the t i m e s  between col l is ions.  

In conclusion we r e m a r k  that  although in [14] and in the p re sen t  p a p e r  identical  r e sonances  ~ l  =~2 
w e r e  studied for  e l - ~ o ,  the r e su l t s  a r e  d i rec t ly  opposite.  In the case  t r e a t ed  here  the instabil i ty,  of in-  
va r i an t  type and hence different  f rom that  in [14], was  obtained as the r e su l t  of having different  signs on 
the osc i l l a to r  m a s s e s .  Actually,  we take the following sy s t em of osc i l l a to rs :  

~ i  )~_ �9 (t s + ~  ---g, g - - - -x  (~,~>0) 

898 



It fo l lows f r o m  th is  tha t  f o r  the  o s c i l l a t o r  y we have the  Eq. (A.1), which g ives  the ma t r i x  of  t r a n s i -  
t ion  be tween  n o r m a l  osc i l l a t ions .  Thus  the  given ins tab i l i ty  r e f e r s  to  a c l a s s  of  ins tab i l i t i e s  of nega t ive  
mass. 

Appendix. As matrix of transition between normal oscillations with the resonances i21 =~2, f~1 =-~2 
we take the matrix of transition for the solutions of the differential equation 

d~. ~ dSy 
d-K +( t  +Z)d- V +~y=0 (A.I) 

w h e r e  X,fl > 0. We give  the  final r esu l t .  The  f r equenc i e s  o f  the  n o r m a l  osc i l l a t ions  a r e  

t~.~(t) = V~[(~+ x + ~)'/~ +(~- i -X-~)v , I  (~= K~--~---i) 

When  X > a > 0, on the  r e a l  t axis  we wil l  have  h i ,  2 > 0. We find the  n o r m a l  osc i l l a t ions  to  be 

The  gene ra l  so lut ion fo r  t - -  �9 ~o may  be wr i t t en  in the f o r m  F ~ Z ,  whe re  F is  a row v e c t o r  cons i s t ing  
of  a r b i t r a r y  cons tan t s .  Then  F+ = F _  M. The  t r a n s i t i o n  m a t r i x  M has  the  r e p r e s e n t a t i o n  

M = ~VIIVe -~h ~:~" (A.2) 

H e r e  V is  a d iagonal  m a t r i x  wi th  the  e l e m e n t s  

V~ = F= = e r Va~ = F~ = d ~ 

F o r  the  e l e m e n t s  of  the  m a t r i x  H we have 

HI1 = -- H n = (i + eS') % (1 + es~) 'h cthl/s ~(~ 
H~a = - -  H~4 = t ,  H3a = - -  II4~'= (t + es') '/' ( i  + es') '/' 

IIs(-~ -- tI1, = chV~ ~ + e '/:=x csch 1/su~ 
Has = I I~  = (t + e~') 'h(cht 1/~ ~(~)'/~ 
H13 = r I~  = - -  I ~ .  

}Ii4 = H ~  = (1 + e~') '/" (c th  ~/~ ~ a )  % 

(A.3) 

T h e  p h a s e s  ~ l ,  ~ a r e  given by  

l [r(1/s+-czl/2~)r(1/'--ca~/2u)] ~ "  x + z  z [ ~ ]  
' ,as = -~ -  arg ~ r (1 + 1/z Cz) r (1/2 (Cz - -  t)) j + ~ m ~ - -  - ~ -  i + In 

(AA) 

W e n ~ e t h ~  

Us ing  Eqs .  (A.2), (A.3), and (A.4),we can show tha t  

d e t M =  i ,  A = M + A M  ( i . 5 )  

w h e r e  the  p lus  s ign deno tes  the  ope ra t ion  of t ak ing  the  t r a n s p o s e  and the  complex  conjugate ;  h i s  a d iagonal  
ma t r ix :  A n =A44 =1, A22 =A33 = - 1 .  F r o m  Eq. (A.5) we obtain the invar ian t  

[FI[ S -~. i Fa] 2 __ ] ip~l S -- I Ya[ S = invar  

We le t  r  Then  fo r  c o l u m n v e c t o r R :  R 1 = St, R2 = ~/i, 1~ =7 h ,  R4 =~2, we obtain 

is DII 
R = ~ D s R* ( A . 6 )  
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F o r  the ma t r i ces  S and D we have 

S11 = $2~ = ? = ( i  + e-2'~ ~/' eosl~, S21 = - -  S12 - -  Z = ( i  + e-~')  % s in 

D22 = - - D x x - - - - p = e  ''eo, D ~ . =  Di~ =0 

I~ = (%1~)  - -  (%1~)  In  ( % / ~ )  - -  r (% - -  r I n)  

The author wishes to thank S. S. Moiseev and V. D. Shapiro for  valuable advice and consultation. 
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